1. Introduction

Ladybug2000 is a programmable video player. It includes an integrated video studio, an interactive video player, cinematic transforms, and Neatware Media Control Language (MCL). It is possible to implement a video application such as a vcd player with a MCL program. You can use the MCL transforms to generate cinematic effects for a video. The Studio makes design, edit, and test the MCL program easily. Just a double click on a .mcl icon, you can play a video automatically under the cotrol of your MCL program. Ladybug2000 also provides an interactive player to compatible with the Ladybug98.

In summary, new Ladybug2000 features are:

Interactive Video Player

Integrated Video Studio

Cinematic Transform

Media Control Language

Player

Ladybug2000 provides automatic and interactive mode to play video. The MCL program can be automatically executed just by double clicking its icon. The traditional interactive video player is also provided like the one in the Ladybug98.

�

�Studio

Ladybug2000 Studio includes an editor and a console. It is convenient to edit MCL program and test it. The console can be used to display the execution result and error message.

�

�Transform

Ladybug2000 can produce the cinematic effects for a video with the transforms in the MCL.

�

MCL

Ladybug2000 includes Neatware Media Control Language (MCL) which is a scripting language for video applications. It is a Tool Control Language (Tcl) clone for video computing. MCL consists of the commands. It provides window, video, playback, transform, and other control commands.

Following example is a simple MCL program. The first package command loads the media package of version 1.0. _window command opens a window with title "Ladybug2000 Video Player", width 320 and height 240 in the screen centre. Then _video opens a MPEG video neat.mpg, starts to play it from the beginning to the end by _play command, and closes the video with video_ command. Finally, window_ command closes the window.

	package require media

	_window {title=Ladybug2000 Video Player border=normal centre=320 240}

	 _video {name=neat.mpg}

	 _play

	 video_

	window_

�2. Ladybug2000 Player

Ladybug2000 is a programmable video player. It can play vcd, mpeg, avi, mp3, and other video/audio.

2.1 Video Format

MPEG�.mpg�Moving Picture Experts Group. This group is working under the direction of the International Standards Organization (ISO) for the standards of compressed motion pictures and associated audio. MPEG-1 had been completed on Oct. 92 known as International Standard ISO-11172.��VCD�.dat�Video CD 2.0. A special MPEG-1 for CD-ROM.��AVI�.avi�Audio Video Interleave. It is widely used on Windows.��MOV�.mov�QuickTime movie format. (Non-propriety). It was developed by Apple and was ported on Windows.��MP3�.mp3�MPEG layer 3 audio��NetShow�.ns�Microsoft streaming video standard��MIDI�.mid�An electronic music standard. It was descriped as a script language.��WAV�.wav�Audio file format popular in Windows.��AU, SND�.au, .snd�Audio file format widely used in Unix��AIF, AIFF�.aif, .aiff�Audio iwdely used in Mac��

2.2 Install/Uninstall

Install

Double Click LB2KFULL.EXE for full version or LB2KDEMO.EXE for demo version installation.

They are self-extract and self-installation files. Following the instructions to complete the installation.

The default application directory is C:\Program Files\Neatware Ladybug2000

	

Uninstall

Start Control Panel, Run Add/Remove Program and remove the software "Neatware Ladybug2000".

2.3 NBar Control

��Nbar is the direct control of video playback.

Clicking right button of mouse on the client window will show the NBar; Clicking left button of mouse on the client window will hide the NBar.

�����Open�open a movie file from a directory��Open Internet�open a file in the Internet. open a internet video by http:\\www.company.com/demo.mpg or ftp:\\ftp.comp.com/demo.mpg .��Controls�get control and information�����Play�play the opened Ladybug movie file��Pause�pause the player��Stop�stop the player�����Loop�stop the player loop��VolumeDown�volume up��VolumeUp�volume down�����Step�one frame step play��Help�show help��Exit�exit the Ladybug2000��

Fullscreen Operation

ESC�Switch from Window to Fullscreen or visa vera��F1�Step command��F2�Play command��F3�Pause command��F4�Stop command��F5�Decrease volume��F6�Increase volume��F7�Decrease rate��F8�Increase rate��F9�Set/Unset loop��

2.4 Advanced Control

Media Control

�

Sliderbar�show current position of a media. You can drag and move the indicator forward and backward to change media position.

��Rate�value from 0.01 to 4.0. When rate is 1.0 it is full speed with 30 frames/second. The n frames/second is equal to rate n/30.0. For example, for 15 frames/second its rate is 0.5. The 1 frame/second rate is 0.03333.

��Single Loop�play one movie file in loop

��Group Loop�play a group of opened movie files in loop

��

		

Video Control

�

Size�set windows size. You can simply press the ESC key to switch between the normal window and full screen mode.

��Caption�set the caption title

��Thick�set the border

��Finish Button�set the control and return

��Cancel Button�cancel the operations�����

Audio Control

�

Mute�set speaker to mute��Volume Sliderbar�volume control��Balance Sliderbar�balance control��Bass Sliderbar�bass control��Treble Sliderbar�treble control��

�Information Control

�

Progress�show the seconds of progress��Width�video width��Height�video height��Avg Time�average time/frame��StartTime�start time��StopTime�media end time��		

2.5 Advanced Features

Group Selection

�

Press Ctrl Key down and select the Ladybug Movie Files by clicking the Mouse Left Button.

Press Shift Key+Arrow Keys down you can select continuous group of movie files by moving the arrow keys. Ladybug2000 will play these movies one after another.

Download video from Internet

Open Internet function can directly download a video file from Internet without a browser. The video files can be retrieved by http or ftp protocol. Note you may wait several minutes to start playing a big video file. It depends on the Internet bandwidth.

�

This function is specially for the users of high-speed Internet Services such as cable, DSL, and wireless. It also works for Intranet such as LAN.

Tips: You can use mouse right button to paste a http or ftp video file address to the edit box.

 True Full Screen Video Support

Ladybug2000 can play MPEG-1 video that its resolution is over 640x480, for example, it can play a video with resolution 1024x768. This function makes Ladybug2000 easily play high resolution motion pictures created by a 3D render such as POV-Ray.

Store the Configuration

After you exit the current Ladybug2000 Player its settings such as rate, loop, and volume will be stored. Next time when you start the Ladybug2000 it restores the settings. For example, you can set the loop and exit the Ladybug2000, when you restart Ladybug2000 it will play your video in the loop automatically. Note: this function may be disabled in some versions.

Play Multiple Audios

You can start multiple Ladybug2000 and each playback a different audio, you will hear the composition audio. That is funny.

Drag and Drop

Ladybug2000 allows you drag a video/audio file from Windows Explorer and drop it to a Ladybug2000 view window. Then you can start to play the new file.

True Full Screen Support

ESC�switch from window to fullscreen or visa vera��F1�step��F2�play��F3�pause��F4�stop��F5�decrease volume��F6�increase volume��

Using with Netscape Navigator

Start Netscape, choose [Options|Preferences] item. Push the first button with panel (default is Styles), select the item [Helper Applications]. To have Netscape start an external viewer, select the Mime Type in the list, then choose the radio button Launch Application. You can choose Ladybug2000.exe as the external viewer for Ladybug Movie File Types such as .mpg, .mpv, .mp2, .mov, .avi, .dat, .wav, .au, .aiff, etc.

2.6 Player FAQ (Frequent Asked Question)

1. Can I run Ladybug2000 on the NT?

Yes. Ladybug2000 Player works on Windows95, 98, 2000, and NT4.0.

2. Can I run Ladybug2000 on a Notebook?

No problem.

3. Can I play VCD (Video CD) with Ladybug2000?

Absolutely. Acturally, like its previous version Ladybug98, Ladybug2000 is a top VCD player on Windows. To play a VCD, you can click the top-left button of the NBAR, then there is a dialog box. Go to your CDROM driver, suppose it is D:, then click the MPEGAV, there may have serveral .dat files. Select one and click the Open button you can watch the VCD movie. To select all the .dat files, simply press the SHIFT key and move the DOWN key to get all the files in the dialog box. To select a group of .dat files, simply press CTRL key and click the left button of your mouse to pick the video files.

4. Can I play a VCD on my DVD driver?

It is dependent on your DVD driver. Some DVD can accept VCD format some can't. We have tested that Toshiba's DVD can play VCD with Ladybug2000. We would appreciate to know what manufacturers DVD can play VCD with Ladybug2000. email us info@neatware.com

5. The Neat video of Ladybug2000 works fine for me but I can not play a VCD, what is the problem?

There are no problems from Ladybug2000. The problem is your CD-ROM driver. Some CD-ROM drivers can not read VCD disk. It may be caused by your system installation or configuration. The testing method is very simple. Try to copy a small file on your CD-ROM to your hard disk, if it is fine, your CD-ROM drive

can read VCD, otherwise there is a problem. In all the cases that one can read a VCD file, Ladybug2000 works fine.

6. I have installed the Ladybug1.xx before, what should I do to install the Ladybug2000?

You can directly install Ladybug2000 without any problems. However, you can delete the files that are belong to old version of Ladybug to save the disk space. Suppose you have installed ladybug3.zip you can do as follows:

Delete files in the following directories:

C:\WINDOWS gen32.3dr, 3dr.ini

C:\WINDOWS\SYSTEM 3dr32.dll, 3dreng32.dll

C:\Netscape\Program\Plugins npavi32.dll

Delete all the files in your ladybug directory

7. I have installed a player for .mpg file association, I want to double click .mpg file to launch the Ladybug2000, how can I do it?

Current Ladybug2000 setup program will automatically modify .mpg file association to Ladybug2000. In some cases, users did not know how to associate a file type (ext) to its player. In the following procedure, you can modify any file type to point on your favior player.

Launch the Windows Explorer

Select View/Options/File Types in Windows Explorer.

Scroll the Registered file types to find the MPG File and click it.

Click Edit to get Edit File Types windows, then click Edit to find the Editing action for type: MPG File

Look at the dialog box Application used to perform action there is [C:\Program Files\Ladybug2000\Ladybug2000.exe "%1"] for example.

Select your player.exe file to replace it.

Click OK/close/close to finish.

8. How can I play a video in fullscreen?

There are two modes of fullscree. Press the ESC key you can switch to true fullscreen mode. And press it again you switch back to the normal window mode. Another method is to click the button of full windows.

9. Is it possible to change the rate of playback in the Ladybug2000?

Yes. This is a unique feature of Ladybug2000. You can change the number in the rate of Media Control. The floating point number is from 0.01 to 4.0. The value 1.0 represents the normal speed that is 30 frames/second; 2.0 is 60 frames/second; and 0.03333 is 1 frame/second. In general, the number of n frame/second is n/30.0.

10. Can I display a windowless video?

After you fixed your video window's position and size, check out the Frame and Caption box in the Video Control, you are able to disable the frame title bar of the video window. It simply looks good.

3. Syntax

Now we start to introduct the programmable functions of Ladybug2000.

�

3.1 Variable

The syntax of Media Control Language (MCL) is similar to the Tcl. A variable is represented as a case sensitive string. It can be used anywhere without declaring its type. It can also be assigned a value. Furthermore a variable value can be accessed by substitution.

3.2 Command

A MCL command syntax is

	command argument1 argument2 ...

where command is a buildin or a defined procedure in the MCL. Spaces separate a command name and its arguments in a line. Newline and semicolons are command terminators. Each command has a return value. To evaluate a command, interprter substitutes command arguments from left to right, which makes a single passing substitution, and then executes the command.

Commands are catalogied as regular and block.

Regular Command

Regular command has a typical command syntax. Its number of argument is unlimited. There are no implict relatioship between two regular commands. It is possible to define a new command and its arguments with proc. For example, the regular command set assigns a value to a variable.

	set var value

Block Command

Block command may specify a scope of the commands. The start command is the beginning of a block command. MCL represents the satrt command name with the underscore prefix as _command argument. A start command has only one argument. The end command is the end of a block command. The command name has the underscore postfix as command_. An end command has no arguments. A start command may have no corresponding end command. Commands in between the start and end commands are called content.

An argument is a list of attributes. Attribute is a key/value pairs separated by whitespace. A pair has the format key=value where key must be a character string (includes letters, digits, hypen, period, and underscore). The value may be any of strings or variables (except the = character). So a value can be a string with spaces. A key that a start command can not recognize will be ignored. And a key will be assigned to its default value when it is not be assigned in the start command.

Start and end block commands provide the context of a defined object such as video. After the execution of the _video command, the video is supposed to be opened until video_ command closes it. In the following example, the code opens a neat.mpg video, play and close it.

	_video "name=neat.mpg"

	 _play

	video_

Query Command

Query command has a form ?command argument. It has only one argument. Usually the command name is an object. The argument specifies the info key of the object. For example, "?window width" command returns the value of the window's width.

	?window width

Execute Command

Execute command has a form !command argument. It has only one argument. Typically the command name is an object. The argument specifies the object attributes that will be changed. Following code changes window's title and orginal point.

	!window {title=New Title Name orgx=100 orgy=200}

3.3 Substitution

Dollar sign $ enables variable substitution. It replaces the variable with its value. ${variable} will be useful to distinguish from other special characters.

	set x $variable

Square brackets [] enable command substitution. A command must be inside the brackets. After evaluation of the command, the return value will replace the square bracket string. The brackets maybe nested. Following command returns the title of a window.

	[?window title]

Backslash \ enables next character substitution. The next character or group after the backslash will be replaced by a new representation of the character. Usually backslash \ is widely used to quote a specific character. For example, the " inside a pair of "" should be substituted by \".

	"inside double quote \" "

	"newline \n and tab \t "

3.4 Grouping

Double quote " " enable inside string substitution. The " character inside the double quote must be disabled with the backslash \" quoting. The grouping value of double quotes is the string inside after substitution.

	"dobule quote enable variable substitution {$variable}

	 and command substitution [clock seconds]"

Curly braces { } disable substitution inside. All the characters include whitespace, double quotes, even nested curly braces (exclude outmost curly braces) are value of the group. When curly braces are inside the double quote, they will not work as grouping.

	{curly braces disable variable substitution {$variable}

	 and command substitution [clock seconds]}

4. Control

4.1 Sequence

Sequence control organizes the command flow in sequence. Each command is executed one after another. Following paragraphs introduce primitive sequence commands.

set

set command assigns a value to a variable. Its first argument is a variable and the second argument is an expression. You can use a variable anywhere without declare its type. To access a variable uses the dollar sign $.

	set v "a string value"

	set u $v

incr

The first argument of incr command is a variable name. The second optional argument is increment integer. incr command increases variable value by increment. Negative increment will decrease a variable. The default value of increment is 1.

	incr x # x increase 1

	incr x -1 # x decrease 1

	incr x [expr {2*3}] # x increment

expr

expr command evaluates math expression with C expression syntax. It concatenates all the arguments to form a input string. The expression may be integer, floating point, and boolean. The return value is a numeric string. Many basic math functions in the standard C math library has been built in.

	expr {2/3} # return 0 (surprise?)

	expr {2.0/3.0} # return 0.666666666667

	expr {asin(1.0)*round(sqrt(2))} # return 1.579079632679

comment

MCL comment starts with # in the start of a line. It is better to treate comment # as a command. There are some quirks prohibited you from writing comment anywhere. (i.e. no # inside the switch command.)

	set x [expr 2*3];	# comment here.

	# comment start

puts

puts command outputs its argument string to stdout. It has only one argument.

	puts "output a $string and a [compute $value]"

4.2 Condition

Condition control may select a command to execute according to the variable value. It branches the command flow.

if

if command will execute truebody when the expression is true, otherwise it will execute elsebody. Its body is a group of commands. The else and elseif keyword are optional for if command. Following codes are several forms of if command:

	if {expression} {truebody}

	if {expression} {truebody} else {elsebody}

	if {expression1} {

	 truebody1

	} elseif {expression2} {

	 truebody2

	} else {

	 elsebody

	}

switch

The syntax of switch command is:

	switch option value pattern body ...

	switch option value {pattern body ...}

switch command compares a value with patterns. If one of them is matched then program executes the related body. The first argument of the switch command is an option. The '-exact' attribute will match the value to the pattern exactly; '-glob' attribute will use glob pattern matching; and '-regexp' will match with regular expression pattern. '--' represents the end of the option. The last pattern 'default' will execute its body if no patterns are matched before.

In the following example, since pattern and body pairs are grouped into an argument, there is no substitution inside the pattern/body pairs.

	switch -exact -- $val {

	 firsti{doFirst}

	 second {doSecond}

	 third {doThird}

	 default {doDefault}

	}

following example can substitute its patterns

	switch -glob -- $val $v1 do_v1 $v2 do_v2 $v3 do_v3

4.3 Loop

Loop commands execute a group of commands in iteration. The iteration may terminate after all the elements are traversed or a condition expression become true.

foreach

foreach command repeatly executes its body until all the elements in a list have been traversed. Its form is,

	foreach var alist ... body

The var is the current loop variable that is assigned an element from the alist one after another. foreach will traverse all the elements in the alist. This command is a compact expression of iteration.

	foreach v {a b c d e} {

	 puts $v

	}

You can declare two or more loop variables. The variables will orderly sample the elements in the list until all of them are traversed. Following example shows that varaiable (v1 v2) pair is assigned the value (a b) respectively, and then the value (c d), and so on.

	foreach {v1 v2} {a b c d e f} {

	 puts "($v1 $v2)"

	}

To loop over multiple lists, you may organize arguments in var/list pair order. The variable var may also be multiple variables. A loop variable will be set to empty {} when its list has finished traveser but the entire loop did not terminated.

	foreach v {a b c d} {v1 v2} {1 2 3 4 5 6} {

	 puts "($v) ($v1 $v2)"

	}

while

while command evaluates the expression, if it is true then execute the body, and then evaluates the expression again until the expression is not true. Its syntax is like while statement of C language.

	while expression body

An example of while command is,

	set count 7

	while {$count > 0} {

	 puts "2*$count"

	 incr count -1

	}

for

The for command syntax is,

	for initial expression increment body

At first it evaluates the initail argument and then evaluates the expression. If the expression is true it executes the body and increment. Repeatlly, it evaluates the expression again and continues the loop until expression returns a false value.

	set len 7

	for {set count 0} {$count < $len} {incr count 1} {

	 puts "2*$count"

	}

4.4 Return

return command comes back from a procedure with a value; break command exits from a loop; and continue command will goto the start of a loop to execute the next iteration.

	set b 6

	set c 5

	set len 7

	for {set count 0} {$count < $len} {incr count 1} {

	 if {$count == $b} {

	 break

	 } elseif {$count == $c} {

	 continue

	 }

	}

	return $c

4.5 Exception

Exceptions raise abnormal conditions during the execution of commands.

Catch

catch command caught the exceptions of a command during its execution. Its syntax is,

	catch {command args ... } result

catch command sets trap to the command in the curly braces. When there is an exception during the command execution, the exception message is assigned to the variable 'result', otherwise the 'result' gets the return value of the command. catch command returns zero when no exception is raised, otherwise returns non-zero.

	if [catch {test $exception} result] {

	 puts "Exception: $result"

	} else {

	 puts "OK: $result"

	}

Error

error command generates an error code. Its first argument is a string that indicates the reason of an error.

	catch {...} errmsg

	error $errmsg

5. Type

5.1	String

String is a primitive object of MCL. It consists of any characters. Some characters may have special meaning for a string in the context. String commands are belong to the ::string namespace. The ::string represents the global namespace :: and along with the string namespace. The string namespace is equal to ::string namespace in many cases.

String Construction

(i) '::string::append VAR STRING1 STRING2 ...' command concatenates STRING1, STRING2, ... onto the variable VAR and returns the new value of the variable VAR; (ii) the '::string::join LIST STRING' command joins the elements of LIST together and distinguishes them with a STRING. The default STRING is a space; (iii) '::string::split STRING CHAR' command splits STRING with the CHAR.

	set v "one " # $v is "one "

	::string::append v "two" # new $v is "one two"

	set l {a {b c} d} # $l is {a {b c} d}

	set r [::string::join l "::"] # $l is "a::b c::d"

	set s [::string::split r "::"] # split r with '::'

String Access

(i) '::string::length STRING' command returns the number of STRING characters; (ii) '::string::range STRING i j' command returns the substring of the STRING from i to j; (iii) '::string::index STRING i' returns the character in the position i. A string has a zero based position. (iv) to find the occurrence of a string, '::string::first STRING ELEMENT' command returns the first occurrence of ELEMENT in the STRING, no finding return -1; (v) '::string::last STRING ELEMENT' command finds the last ELEMENT occurrence in the STRING, no finding return -1.

	set s "abc defe"

	set n [::string::length $s] # n is 8

	set r [::string::range $s 1 5] # r is "bc de"

	set i [::string::index $s 0] # i is "a"

	set f [::string::first "ef" $s] # f is 5

	set t [::string::last "e" $s] # t is 7

String Operation

(i) '::string::compare STRING1 STRING2' compares two strings. It returens 0 if they are equal, or -1 if STRING1 is less than the STRING2, otherwise +1; (ii) to find a string in a pattern, '::string::match STRING PATTERN' command completes pattern matching, that is the STRING matches PATTERN. PATTERN may be the combination of characters and the special matching characters where * for any characters, ? for any single character, and [xyz] for one of a character in the []. If STRING matches the PATTERN then it returns 1, otherwise it returns 0. (iii) '::string::tolower STRING' and '::string::toupper STRING' will convert the STRING to lower and upper case respectively. Examples of string compare are:

	set s "abc "	

	set r [::string::compare $s "abc"]

	if {$r == 0} {

	 puts "s == 'abc'"

	} elseif {$r == -1} {

	 puts "s < 'abc'"

	} else {

	 puts "s > 'abc'"

	}

::string::match example:

	if {[::string::match $s {a?[xyz]}] == 0} {

	 puts "matched"

	}

string conversion example:

	set l [::string::tolower $s]

	set u [::string::toupper $s]

String Format

'::string::format STRING VAR1 VAR2 ...' command is similar to printf() function of C. It returns a formatting string. STRING is the format specification. VAR1, VAR2 ... are corresponding values.)

	set s "32"

	set d [::string::format "%2d %lf" $s $s]

5.2 List

List is a useful type to represent document structure. Tree structure is a special case of list.

List Construction

(i) '::list::list a1 a2 ...' command constructs a list from its arguments a1, a2, The curly brace {} represents empty list; (ii) '::list::append LIST a1 a2 ...' command appends arguments a1, a2, ... to the the end of the LIST as elements; (iii) to merger lists, '::list::concat LIST1 LIST2 ...' joins the elements in LIST1, LIST2, ... together to form a new list; finally, (iv) '::list::split STRING c' command returns a list that splits the STRING with characters c.

	set lx [::list::list a b c {d e}] # lx is a list {a b c {d e}}

	set ly [::list::append $l {g h}] # ly is a new list {a b c {d e} {g h}}

	set lxy [::list::concat $lx $ly] # lxy is the join of lx and ly

	set s "a, b, c"

	set l [::list::split $s ","] # l is a list {a b c}

List Access

(i) '::list::length LIST' returns the number of elements in the LIST; (ii) to get a sub-list, '::list::range LIST i j' command returns elements of LIST from i to j; finally, (iii) '::list::index LIST i' returns the ith element of the LIST.

	set l {a b {c d}}

	set n [::list::length $l] ;# n is 3

	set e [::list::range $l 0 1] ;# e is {a b}

	set i [::list::index $l 2] ;# i is {c d}

List Operation

'::list::search LIST VAR [OPTION]' returns the index of LIST that matches the VAR value in one of an OPTION or return -1 if no value is found. -glob, -exact, and -regexp are possible OPTION values. The default OPTION value is -glob.

(i) to add a new element into a list, '::list::insert LIST i a1 a2 ...' command inserts elements a1, a2, ... before the index i of the list LIST. It returns the new list; (ii) to modify elements, '::list::replace LIST i j a1 a2 ...' command replaces elements from i to j in LIST by elements a1, a2, ... and returns the new list; (iii) '::list::sort LIST [OPTION]' sorts elements in LIST according to one or more OPTION values (-ascii, -integer, -real, -dictionary, -increasing, -decreasing, -command, -index i). The default options are '-ascii -increasing'. It returns the new list.

	set l {a b {c d}}

	set n [::list::search $l "b" -exact] # n is 1

	set v [::list::insert $l 1 "f"] # v is {a f b {c d}}

	set u [::list::replace $l 0 0 "g"] # u is {g f b {c d}}

	set s [::list::sort $l {-increasing -ascii}] # s is {b {c d} f g}

5.3 Array

In MCL an array is the same as the array of Tcl. It is acturally an associate array rather than a traditional array. It is a collection of key/value pairs. The key is a index and the value is an element of an array. An element of array 'a' with index 'key' is represented as a(key). Its value is $a(key). An array is implemented as a hash table.

Array Construction

'::array::names ARRAY [PATTERN]' command returns the list of ARRAY keys that match the PATTERN. If no PATTERN item it returns the list of all the keys of the ARRAY.

	set a(x) "abc"

	set a(y) "def"

	set l [::array::names a] # $l is {x y}

Array Access

(i) '::array::exists ARRAY' returns 1 if ARRAY is an array variable, otherwise it returns 0; (ii) '::array::size ARRAY' returns the number of elements of ARRAY.

	if {[::array::exists a] == 1} {

	 puts "a is an array"

	 set n [::array::size a]

	} else {

	 puts "a is not an array"

	 set n 0

	}

Array Operation

(i) '::array::get ARRAY [PATTERN]' returns a key/value pair list. PATTERN is used for matching keys. Without PATTERN '::array::get' command will return all the pairs; (ii) '::array::set ARRAY LIST' command sets ARRAY with the LIST in the key/value form.

	set a(x) "abc"

	set a(y) "def"

	set l [::array::get a] # l is a list {x abc y def}

	::array::set m $l # m is an array same as a

5.4 File

File commands are divided inot directory and file operations.

Directory Status

(i) '::file::dirname name' returns a directory name in a path. If name is a relative file name and only contains one path element, then returns ``.'' (or ``:'' on the Macintosh). If name refers to a root directory, then the root directory is returned. (ii) '::file::tail name' returns the name after the last directory separator. If name contains no separators then returns name itself (iii) '::file::isdirectory name' returns 1 if file name is a directory, otherwise returns 0. (iv) '::file::mkdir dir1 dir2 ...' creates one or more directories. For each pathname dir specified, this command will create all non-existing parent directories as well as dir itself. If a directory exists, then no action is taken and no error is returned. Trying to overwrite an existing file with a directory will result in an error. dir arguments are processed in the order specified, halting at the first error, if any.

	::file::dirname ~/src/foo.c # returns ~/src

	::file::tail ~/src/foo.c # returns foo.c

	::file::mkdir src # create src directory

File Status

(i) '::file::size name' returns the file size; (ii) '::file::atime name' returns a decimal string giving the time at which file name was last accessed. The time is measured in the standard POSIX fashion as seconds from a fixed starting time (often January 1, 1970). If the file doesn't exist or its access time cannot be queried then an error is generated; (iii) '::file::stat name varname' invokes the stat kernel call on name, and uses the variable given by varname to hold information returned from the kernel call. varname is treated as an array variable, and the following elements of that variable are set: atime, ctime, dev, gid, ino, mode, mtime, nlink, size, type, uid. Each element except type is a decimal string with the value of the corresponding field from the stat return structure; see the manual entry for stat for details on the meanings of the values. The type element gives the type of the file in the same form returned by the command file type. This command returns an empty string;

(iv) '::file::attributes name [option]' this subcommand returns a list of the platform specific flags and their values. The '::file::attributes name [option value ...] sets one or more of the values. The values are as follows:

On Windows, -archive gives the value or sets or clears the archive attribute of the file. -hidden gives the value or sets or clears the hidden attribute of the file. -longname will expand each path element to its long version. This attribute cannot be set. -readonly gives the value or sets or clears the readonly attribute of the file. -shortname gives a string where every path element is replaced with its short (8.3) version of the name. This attribute cannot be set. -system gives or sets or clears the value of the system attribute of the file.

	set s [::file::atime filename]

	set len [::file::size filename]

File Operation

(i) '::file::copy source target' copies source file to the target file or directory; (ii) '::file::delete pathname [-force]' remove files and directories. -force option will delete the pathname in force.; (iii) '::file::rename source target' rename source file name to the target; (iv) '::file::join name [name ...]' takes one or more file names and combines them, using the correct path separator for the current platform; (v) '::file::split name' returns a list whose elements are the path components in name. The first element of the list will have the same path type as name. All other elements will be relative.

	::file::copy src.sna dest.sn

5.5 Channel

A channel maybe either a file or a pipeline processes. You may create, open, read/write, and close a channel.

Channel Creation and Close

(i) '::channel::open name [access] [permission]' returns a channel id. The 'name' maybe a file name or a pipeline specification. The 'access' maybe fopen like format or POSIX format. The 'permission' is the permission access on the new file. Its default value is 0666 that permits read/write for anyone. (ii) '::channel::close cid' will close the channel cid. (iii) '::channel::flush cid' writes the content of buffer to the channel.

	fopen-like access format

	r read

	r+ read & write

	w write; file exists truncate, otherwis create

	w+ write & read; file exists truncate, otherwise create

	a write; append

	a+ read & write; append

	POSIX access format

	RDONLY read

	WRONLY write

	RDWR read & write

	APPEND append

	CREAT create if file not exists

	TRUNC truncate

use with catch example:

	if [catch { ::channel::open $filename "w+"} fid] {

		# error

		::channel::write stderr "open file error!"

	} else {

		# processing

		::channel::close $fid

	}

Channel Status

(i) '::channel::seek cid offset [org]' sets the current position to offset from the org. org may have the value start, current, or end. (ii) '::channel::tell cid' returns current position of the channel (iii) '::channel::eof cid' if it is the end of file.

	set pos [::channel::seek $cid 256 start]

	set cur [::channel::tell $cid]

	set flag [::channel::eof $cid]

Channel Access

(i) '::channel::read cid [nbytes]' reads nbytes or entire data from cid. It returns the reading data. (ii) '::channel::write cid string' writes a string to the cid. -nonewline will not write the newline after the string.

	set data [::channel::read $cid 256]

	::channel::write $cid "welcome to Neatware MCL" -nonewline

�6. Module

6.1 Procedure

MCL may construct modules with procedure, namespace, and package. A procedure defines a new command with the combination of existed commands; namespace avoids the global naming confliction; and package loads an extension without concerning its location.

proc

The syntax of proc command is

proc name argument body

The first argument 'name' of proc is the command name. 'argument' is a list of arguments of the command. An element of the 'argument' can be a string or a list pair. A string is the argument name without default value. A list pair consists of an arugment name and its default value. The 'body' specifies the command sequence that implements the function of a procedure. All the variables except the global variables in the body have a local scope. The return value of the last command will be the return value of the procedure except exist a return command.

	proc distance {x, y, {a 0} {b 0}} {

	 set xa [expr $x-$a]

	 set yb [expr $y-$b]

	 return [expr sqrt($xa*$xa + $yb*$yb)]

	}

to invoke the procedure

	set d [distance $a1 $b1 $a2 $b2]

6.2 Namespace

Namespace specifies a new scope for global variables and procedures. It minimizes the naming conflict. Namespace is used to represent commands in structure. Following declaration specifies the namespace definition. namespace declaration

	namespace eval name {

	 variable var value ...

	 namespace export proc1 proc2 ...

	}

procedure declaration

	proc name::proc1 {args} {

	 variable var

	 commands ...

	}

	...

more procedure declaration

	proc name::procn {args} {

	 commands ...

	}

declaration

'namespace eval name' specifies the name of a namespace. In the namespace specification, keyword 'variable' declares the variable 'var' and its initial value 'value'. The 'namespace export' command declares the procedure names that will be available for invocation. Outside the 'namespace eval' declaration the proc specifies a procedure of the namespace. The procedure name consists a namespace prefix name linked by :: with a procedure name and its arguments. Local namespace variable must be declared by variable command.

It is possible to define a namespace with the full qualified name rather than relative qualified name. Global prefix :: must be added to the namespace name. We suggest namespace name and proc name starts with the capital letter, variable name starts in the lowercase letter. These naming convenition will make code readable.

usage

To invoke a namespace procedure, you can use 'name::proc args'.

	Network::Protocol "TCP/IP" or::Network::Protocol "TCP/IP"

6.3 Package

Package organizes a libray of programs. Ladybug2000 uses the facility of Tcl to extend its functions for component programming.

package

Package command provides a facility to group a set of commands. To setup a package each library must declare a 'package provide pkgname pkgver' in its file. The 'pkgname' is the package name. 'pkgver' is the version number of the package with the format 'major.minor'. Same major number expresses the interfaces of the packages are compatible. Different minor number may have different implementation. Usually a package should keep backward compatibility. That is the package with bigger major number will work for the package with smaller major number. A package may be distributed on several files by specifing the identical 'package provide' command. In the library file,

	package provide media 1.0

To use a package a 'package require' command must be declared in a program. The syntax is 'package require pkgname [pkgver]'. Without the pkgver argument the hightest version of the package is loaded. If there is no suitable version of package available, 'package require' command will raise an error. In the application file,

	package require media 1.0

How to create a package? At present we have no package manager program. You need to do manually package installation.

You need to create a package file with namespace or procedures and add 'package provide' command in the file.

You may put the package file to a subdirectory. Then you need add a command 'lappend ::auto_path subdirectory' in the beginning of your code. With this command, the package will automatically search the files in the auto_path and its subdirectories.

In addition, you must execute a command 'pkg_makIndex sudirectory name1.tcl name2.dll' to generate a pkgIndex.tcl file. You may modify the pkgIndex.tcl file to add or delete a command

7. Media

�

7.1 Video

Video is the primary media in the MCL. Video is a sequence of the still image frames. It may link with an audio sequence. When these frames display on the screen as a continuous stream, it generates the animation. The frame sequence is numbered from 0 to n.

A video may be compressed in certain format such as MPEG. The procedure of video playback starts to read from a source, split video and audio, decode data, and render to window. A media source may be a file in a CD-ROM or on the Internet. Video and audio are split into different decoders and they are synchronized by a clock. The output frame is rendered onto a window.

MCL commands can control the video playback. It can also complete video transform together with an image or a 3D mesh input. A transform can generate special visual effects. For example, fade transform can show a video fade smoothly from a frame to another image. These transforms make video playback more like a film. In the Star War movie, the wipe and fade transforms are widely used to generate the sepcial visual effects. MCL provides simple methods to do this.

Open Video

Command�_video argument

��Argument�name=video_file_name

��Descriptiotn�open a video file specified by name. The default file name is default.mpg if there is no argument. The curly braces {} will group the string as one argument. The "" will also group the string and allow the name to be a variable.

��Examples�_video {name=default.mpg} # other commands video_

��

Close Video

Command�video_��Argument�none��Descriptiotn�close a video file which is opened by _video.��Examples�_video {name=default.mpg} # other commands video_��

Get Video Information

Command�?video argument��Argument�capability get the list of video capability;

type get the video type; 		

current get the video current frame;

start get the video start frame;

end get the video end frame;

length get the video frame number;

��Descriptiotn�?video command get the information about the video. Its argument specifies the item of the attribute. capability item maybe a list with one or more elements of AsynchronousStream, HasClock, and SupportSeek. AsynchronousStream indicates that the video is an asynchronous stream; HasClock indicates that there is a clock for the video; SupportSeek indicates that the video supports random seek. format item returns video format such as MPEG, DVD, and so on. type item get the info if the video is STREAMTYPE_READ for readable, STREAMTYPE_WRITE for writeable, or STREAMTYPE_TRANSFORM for transformable. The current, start, and end returns the current, start, and end frame of the video. Video position is numbered as frame. length gets the total video frame number.

��Examples�_video {name=default.mpg} set caps [?video capability] video_��

7.2 Snap

Snap is an abstraction of a snapshot of a picture or a video frame. It maybe an image, a texture, a 3D mesh, or a frame of a video. It is an input for a transform.

Snap Command

	

Command�_snap argument��Argument�image=image_file_name;	default value default.png mesh=mesh_file_name;	default value default.msh

��Descriptiotn�argument is the list of attributes. If argument is empty, the sanp is get current frame of the video. image=filename specifies the image file to be used. mesh=filename specifies the mesh file to be used.

��Examples�snap {image=default.png}��

�8. Playback

8.1 Playback

Play, pause, stop, and rewind commands control video's playback.

Play

Command�_play argument��Argument�from=start_frame_number; default 0

to=end_frame_number; default video frame length

��Descriptiotn�playback a video from the start frame to end frame. If argument is empty, it plays video from 0 to the end of the video. If a _transform command is executed before the _play, it will run the transform first.

��Examples�play {from=20 to=250}��

Pause

Command�_pause��Argument�none��Descriptiotn�pause playback of a video.��Examples�_pause��

Stop

Command�_stop��Argument�none��Descriptiotn�stop playback of a video.��Examples�_stop��

Rewind

Command�_rewind��Argument�none��Descriptiotn�it sets the video head to the beginning position. It is equivalent to the _seek {current=0} command.��Examples�_rewind��

�8.2 Seek

Snap is an abstraction of a snapshot of a picture or a video frame. It maybe an image, a texture, a 3D mesh, or a frame of a video. It is an input for a transform.

Seek

Command�_seek argument��Argument�start=start_frame;	default 0

end=end_frame; default duration

current=current_frame; default current position

��Descriptiotn�_seek sets the current video position or its start and end position. Ladybug2000 only supports the frame seeking format.

��Examples�_video {name=default.mpg} _seek {current=48} _play video_��

9. Transform

9.1 Basic

�

Transform completes one or two image or 3D mesh composition in progress. MCL transform can composite a video frame with a still image or a 3D mesh and generates cinematic effects.

Command�_transform argument��Argument�name=transform's name; default Wipe

order=inputs order; default normal with order (snap video)

duration=seconds of processing; default 20.0

progstart=progress starting value in [0.0, 1.0]; default 0.0

progend=progress end value in [0.0, 1.0]; default 1.0

progcur=progress current value in [0.0, 1.0];	default 0.0

��Description�The attribute name specifies the transform name. order attribute specifies the order of inputs. It has the possible value normal or exchange. The value normal indicates that the first input is from a snap and the second input is from the current video frame. duration attribute is the processing duration of the transform. Its unit is the second. progstart attribute specifies the start value of the progress of the transform; progend, attribute specifies the end value of the progress of the transform; progcur attribute specifies the current start value of the progress. All of them have the value in the range from 0.0 to 1.0.

��Examples�_transform {name=Wipe order=exchange duration=20 progstart=0.5 progend=1.0}��9.2 Types

It is possible to design and use many transforms. MCL uses the transforms that are generated with Microsoft DirectX Transform. In the following paragraphs, we will introduce some typical transform

Wipe

�

Wipe transform sweps image B over the image A from left to right. There are three rectangle regions: image B only on the left, gradient region on the middle, and image A only on the right. The gradient region is the rectangle mixing between image A and B. The boundary between image A region and the gradient region is called the leading edge. Similary, the boundary between the image B region and the gradient region is called the trailing edge.

�

Its progress value is from 0.0 to 1.0, indicating how much of the transition has been completed. The custome attribute of the wipe transform grandient specifies what percentage of the toal image width to use. It has the value from 0 to 100.

Fade

It makes an image progressively fade or disappear. For example, an image may be fade into a white.

�

�MetaCreations Transform

These transforms are used to generate cinematic effects. Following are snapshots that are generated by Ladybug 2000. They are image transforms. Refer to "samples\transform\transform list.mcl" for script details.

�

10. Windows

10.1 Open

Window commands complete open, close, query, and modify the window object. Open command will create a window and other video DirectX surfaces for video rendering.

Command�_window argument��Argument�title=caption name; default Ladybug2000

border=normal | windowless; default normal	

orgx=top-left x coordinate; default 0

orgy=top-left y coordinate; default 0

width=window width; default 100

height=window height; defautl 100

auto=true | false;	default false

��Descriptiotn�title attribute specifies the name string of the window's title. border attribute has the value normal and windowless. The value normal specifies that it is a normal window and this is the default value of the border. The value windowless specifies that it is a window without the border and title. The attribute orgx and orgy specify window's top-left position. The default value is (0, 0). width and height attributes set the window width and height. When auto attribute is false it will close the window after the execution of the window_ command. Otherwise it will leave the window open until you press the ESC key or click the close button on the title bar. centre attribute puts the window with the width and height on the centre of the screen.

��Examples�_window {title=Ladybug 2000

 border=windowless centre=320 240}

 # other commands window_	��

�10.2 Close

Command�window_��Argument�none��Descriptiotn�window_ command close the window according to the auto attribute in the _window command. When auto is set to true the window is closed after execution window_ command.

��Examples�_window {title=Test}

window_��	

10.3 Query

Command�?window argument��Argument�title	get title string wordstart

rect	get window's rect list {left top right bottom}

client	get window's client rect list {left top right bottom}

border	get window's border with value normal or windowless

��Descriptiotn�get the window information.

��Examples�_window {title=Test}

 ?window title

 ?window rect

 ?window client

 ?window border

window_	��

		

10.4 Modify

Command�!window argument��Argument�title=new title name	set title string

orgx=org x value		set org x value

orgy=org y value		set org y value

width=window width	set window width

height=window height	set window height

auto=true | false		set auto close window

��Description�change window's attributes. title attribute changes the title string of the window. orgx and orgy attributes modify the top-left x and y coordinator. width and height attributes modify the window's width and height. When auto attribute is changed to true it will automatically terminate the window after the execution of window_ command.

��Examples�_window {title=Neatware Ladybug 2000 orgx=100 orgy=100 border=windowless auto=false} set t [?window title] !window "title=Title : $t width=100 height=200" window_��

�11. Interactive

11.1 Interactive

Ladybug2000 provides interactive control with keyboard and mouse.

Keyboard

F1�step move a frame. * not available on this version.��F2�play a video.��F3�pause video playback.��F4�stop video playback and return to head.��F7�volume decrease.��F8�volume increase.��

Mouse

Moving Window�In the normal window, press the left button in the title bar and drag, you can move a window to another position.

��Window Size�Dragging the mouse in the border of the window, you can enlarge or shrink the window's size.

��Maximize Window�Click the maximize box on the title bar.

��Iconify Window�Click the iconify box on the title bar. The video will stop to play in the iconify state.

��Close Window�Click the close box on the title bar, the window will be closed.��

12. System Requirements

NAME�MINIMUM�RECOMMAND��processor�Pentium75�PIII 500+��memory�16MB�64MB+��hard disk�20MB free�40MB free��video card�VGA�GeForce2, ATI 128, Voodoo3-2000/3000, Voodoo4/5, TNT2, ��sound card�16bits 	�128bits Soundblast��operating system�Win95, NT4.0�Win98, Win2000��

�13. Examples

13.1 Introduction

Window commands complete open, close, query, and modify the window object. Open command will create a window and other video DirectX surfaces for video rendering.

intro window 		open and close a window 	

intro windowless 	open a borderless window and play 	

intro video 		open and close a window and a video 	

intro snap 		open a snap

	

13.2 Information

info window 		query information as title, width, height, etc. 	

info video 		query video information 	

info screen 		query screen information as width and height 	

info transform 		query transform infomation as available transforms 	

change window 		modify window style as width, height, and title 	

13.3 Playback

play single 		play a single video 	

play single loop 		play a single video in loop 	

play single step 		play a single video with step command 	

play group 		play a group of videos 	

play group loop 		play a group of videos in loop 	

play group enlarge 	play a group of video and enlarge the window 	

play fullscreen 		play a video in fullscreen 	

play seek 		seek a video and start play

	

13.4 Transform

transform basic 		complete a single transfrom on a snap of an image in the start of video 	

transform list 		complete a list of transform 	

transform wipe 		complete wipe in between the videos 	

transform images 	complete a transform with an image at the beginning of the video and another 				image at the end of the video. 	

transform all 		test all the available transforms 	

13.5 Advanced

adv preview 		preview first n frames of video. 	

adv preview step 	preview videos with _step command and show the frame number 	

adv play cutlist 		play a selected list of video files in the CD-ROM F: driver. You need to change 				the F: to your own driver as D: or E: in the code. 	

adv play vcd 		play all the vcd files from first to last. Suppose the vcd files are in the F: driver. 				You can change the F: to CD-ROM driver as D: or E: in the script code. 	

adv play reverse 	play video in reverse. 	

Ladybug2000 Player		Copyright (1999 Neatware

�

�

� PAGE �28�

